Line integral over a scalar field
∫abf(x(t))⋅∣∣x′(t)∣∣dt
Line integral over a vector field (Work)
∫ΓF⋅ds=∫abF(x(t))⋅∣∣x′(t)∣∣x′(t)⋅∣∣x′(t)∣∣=∫abF(x(t))⋅x′(t)dt
Where ∣∣x′(t)∣∣x′(t) is the unit normal vector, of x.
Line integral over a complex function
∫Γfdz=∫abf(z(t))⋅z′(t)dt